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It ain’t what you don’t know
that gets you into trouble.
It’s what you know for sure
that just ain’t so.

Mark Twain 1835-1910 ) e
American writer and humorist : |=>,
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Inside every Al system are chips...
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At the heart of every Each chip contains Lam’s equipment is

electronic product is a billions of transistors used to manufacture

complex microchip that require advanced these semiconductor
technologies to create devices with as

many as 1000
process steps

Nvidia H100 Hopper

Innovative people,
designing and
developing the
process

Lam wafer fabrication equipment is behind virtually every chip on the market.
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How chips are made

300 mm wafer

P [
<« L

DEPOSITION

Put down film
to be patterned

Create pattern mask

ETCH

Selectively remove film

([ 6 EEAEEE

STRIP

Remove mask

CLEAN

Remove residues

Feature
Level:
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Photoresist

Applied Materials: How do you make a semiconductor
Micron: The Hidden Steps of Semiconductor Manufacturing

(Directionally)

Residue/Particle



https://www.youtube.com/watch?v=4gt5jM6afj8
https://www.youtube.com/watch?v=j4aH69SRiT0

Wafer fab equipment enables semiconductor industry

2024 WFE segments 2024 WFE ranking
JE et 1 Applied Materials
~$3.7 Trillion Inspection
- and
Metrology 2  ASML
Semiconductors
~$588 Billion Other 3  Tokyo Electron
Plasma Plasma
deposition etch and 4 Lam Research
. clean
Wafer fab equipment
~$120 Billion = |

A LAM RESEARCH



A LAM RESEARCH

$1 trillion semiconductor industry:
A multitude of drivers to amplify industry growth

SALES IN BILLION U.S. DOLLARS
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“The Singularity is Near”
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“The future ain’t what it used to be”

Yogi Berra, 1925-2015
NY Yankee

Princeton Plasma Physics School




The Semiverse is Lam’s vision
for a new digital ecosystem: a

. . . . seamlessly integrated digital 2
. b
* + * * and physical network created |
. . . . tofoster creativity and problem
* * ° ° solving through unprecedented S :
e O ) ° ) : “'3
e « « - global collaboration. G y | '
0 o o < N bl o . @‘Q& G
® 6 o o ,ﬁﬁh‘ :
e 0 o o DQ )ﬁa\
: : : : Tim Archer, Lam President & CEO, & :
o « o o Accelerating through the Semiverse, imec & PR o 39 |
o o o o International Technology Forum, May 2022 q _ :
“ &
"
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Semiverse for

Virtualization leverages (not replaces!) investment
in physical assets and real experiments

Virtual
Virtual experimentation saves time, money, and process:
resources (per recipe)
 Real experiments - $1000, 0.5 days
- Simulated experiments - $0.11, 8 mins
« Emulated simulations - $3e-07, 0.0013 s
Virtual experimentation can be ubiquitous and an
effective workforce training tool Virtual
tool:
Barriers
* Business model
- Some invention required
» Data sharing/ownership concerns
Virtual
fab:
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The Semiverse is GREENer

Every experiment investigated showed lower CO, equivalent from simulation

10x scale 50x scale
_‘é’ 5,000 50,000 7.0TCO,e 250,000
£ Saving (17%)
3 S 1C00 147.8 TCO,e
© 4,000 Saving (90%) 40,000 200,000 Saving (84%)
S o
20" 3000 2.1TCO.e 30,000 150,000
39 Saving (88%) | 19.6TCO,e |
> Saving (93%)
T =
% 2,000 20,000 100,000
£ 0.7 TCO,e
L?.I) 1,000 Saving (98%) 10,000 50,000
, ; ;
lon Energy RC Optimization 2nm Logic NAND Channel NAND OPOP Edge Ring Prototyping
Prediction Gap Fill Hole Etch Memory Hole

B Without simulation (hypothetical) [l With simulation (actual)
IEEE TRANSACTIONS ON SEMICONDUCTOR MANUFACTURING, VOL. 37, NO. 4, NOVEMBER 2024
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Reactor-scale twin

Simulate operating
conditions in the chamber
to predict and optimize
process behaviors

The power of transformation

@ Reduce product development cycle time

@ Accurately estimate the etch or deposition
rate on the entire wafer surface

@ Less waste with enhanced productivity
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Equipment-scale twin

Improving first time
right from design
through install

The power of transformation

Virtual design, build, test, and verification
— find issues before physical build

@ Design for manufacturing and serviceability

@ Less waste from fewer hardware iterations

"“-.& s i
A LAM RESEARCH R,



Equipment-scale twin

Building equipment
expertise faster and
more effectively

The power of transformation

Provides faster more complete learning for
engineering workforce

Allows more frequent refresher training and
content updates

Enable earlier access to new product training

A LAM RESEARCH
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Equipment-scale twin

Reducing tool
downtime with

Al and AR enabled
troubleshooting

The power of transformation

Al identifies problem and prescribes fix using
data and learning from various sources

Minimizes engineering service labor
and cost




Fab-scale twins

Using machine

learning to achieve

yleld faster with

The power of ransformation chamber matching
chortoning me to ool qualfcation and fleet

optimization

@ Minimizes fleet performance variability

@ Reduces engineering service labor




Semiconductor
Manufacturing and
Advanced Research
- With Twins

https://www.smartusatwins.org/

Digital Twins for
Smarter Semi?
Manufacturin
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https://www.smartusatwins.org/
https://www.smartusatwins.org/
https://www.smartusatwins.org/

Ask ChatGPT

Please provide a summary of the state-of-the-art in the use of machine
learning to optimize semiconductor chip manufacturing

Thought for 13 seconds...
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Machine learning (ML) has rapidly been
, transitioning from traditional rule-

based control to data-driven, adaptive systems. State-of-the-art ML
methods now permeate every facet of semiconductor chip

manufacturing—from and to
. , and

Ongoing advancements in explainability, federated training, and
quantum-inspired algorithms are poised to drive the next wave of
efficiency, quality, and agility in semiconductor fabs.

References included in further reading list at end of this presentation
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Some Pertinent References

* E.ARietman andE.R. Lory, “Use of neural networks in modeling semiconductor manufacturing processes: an
example for plasma etch modeling.” Semiconductor Manufacturing, IEEE Transactions on Semiconductor
Manufacturing 6(4):343 — 347 (1993)

* Anirudh et al., "2022 Review of Data-Driven Plasma Science," IEEE Trans. Plasma Sci., vol. 51, no. 7, July
2023.
Plasma science is entering a transformative data-driven era
Core technologies:
Surrogate modeling & Physics-Informed Neural Networks (PINNSs)
Workflow automation, visualization, and uncertainty quantification

* Y.-L. Chen etal., “Exploring Machine Learning for Semiconductor Process Optimization: A Systematic
Review.” Jul. 16, 2024. doi: 10.36227/techrxiv.172114788.85190557/v1
Optimize semiconductor manufacturing
Literature survey identifying 58 publications

* A.D. Bonzanini, K. Shao, D. B. Graves, S. Hamaguchi, and A. Mesbah, “Foundations of machine learning for
low-temperature plasmas: methods and case studies,” Plasma Sources Science and Technology, vol. 32, no., r%\>

2, Feb. 2023, doi: 10.1088/1361-6595/acb28c. e
SEMISAN




Manufacturing leads the way with lots of cheap data

* For atypical fleet of tools
* 100 sensors, 200 chambers
2000 status variables
* 100’s of process steps
* 5 Hz frequency

* How much data per fleet?
* 5000 features extracted per wafer run
* 100 million feature data points per day
* 5-10 billion raw data points per day
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Al in Chip Design

e Automated

* Placing blocks (compute, memory, |/0O)
optimally.

* Google's DeepMind-trained Al delivers better
layouts for TPU chips in <24 hours

 Generative EDA Tools

* ML models to
variants and optimize multi-objective trade-
offs (power, timing, area).

e Synopsys’ DSO.ai applies ML to chip design
workflows; Cadence’s Cerebrus uses
reinforcement learning for automatic
optimization of placement, routing, and power
use

& Antenna Modeling

* Co-design circuits with electromagnetic
properties in mind.

* Achieves faster and better designs for
RF/wireless amplifiers—often beyond
human capability

XY
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https://spectrum.ieee.org/google-invents-ai-that-learns-a-key-part-of-chip-design?utm_source=chatgpt.com
https://www.aegissofttech.com/insights/ai-in-semiconductor-industry/?utm_source=chatgpt.com
https://www.aegissofttech.com/insights/ai-in-semiconductor-industry/?utm_source=chatgpt.com
https://www.aegissofttech.com/insights/ai-in-semiconductor-industry/?utm_source=chatgpt.com
https://www.aegissofttech.com/insights/ai-in-semiconductor-industry/?utm_source=chatgpt.com
https://www.aegissofttech.com/insights/ai-in-semiconductor-industry/?utm_source=chatgpt.com
https://www.aegissofttech.com/insights/ai-in-semiconductor-industry/?utm_source=chatgpt.com
https://www.aegissofttech.com/insights/ai-in-semiconductor-industry/?utm_source=chatgpt.com
https://engineering.princeton.edu/news/2025/01/06/ai-slashes-cost-and-time-chip-design-not-all?utm_source=chatgpt.com
https://engineering.princeton.edu/news/2025/01/06/ai-slashes-cost-and-time-chip-design-not-all?utm_source=chatgpt.com
https://engineering.princeton.edu/news/2025/01/06/ai-slashes-cost-and-time-chip-design-not-all?utm_source=chatgpt.com
https://engineering.princeton.edu/news/2025/01/06/ai-slashes-cost-and-time-chip-design-not-all?utm_source=chatgpt.com
https://engineering.princeton.edu/news/2025/01/06/ai-slashes-cost-and-time-chip-design-not-all?utm_source=chatgpt.com
https://engineering.princeton.edu/news/2025/01/06/ai-slashes-cost-and-time-chip-design-not-all?utm_source=chatgpt.com
https://engineering.princeton.edu/news/2025/01/06/ai-slashes-cost-and-time-chip-design-not-all?utm_source=chatgpt.com
https://engineering.princeton.edu/news/2025/01/06/ai-slashes-cost-and-time-chip-design-not-all?utm_source=chatgpt.com
https://engineering.princeton.edu/news/2025/01/06/ai-slashes-cost-and-time-chip-design-not-all?utm_source=chatgpt.com
https://engineering.princeton.edu/news/2025/01/06/ai-slashes-cost-and-time-chip-design-not-all?utm_source=chatgpt.com
https://engineering.princeton.edu/news/2025/01/06/ai-slashes-cost-and-time-chip-design-not-all?utm_source=chatgpt.com
https://engineering.princeton.edu/news/2025/01/06/ai-slashes-cost-and-time-chip-design-not-all?utm_source=chatgpt.com
https://engineering.princeton.edu/news/2025/01/06/ai-slashes-cost-and-time-chip-design-not-all?utm_source=chatgpt.com
https://engineering.princeton.edu/news/2025/01/06/ai-slashes-cost-and-time-chip-design-not-all?utm_source=chatgpt.com
https://engineering.princeton.edu/news/2025/01/06/ai-slashes-cost-and-time-chip-design-not-all?utm_source=chatgpt.com
https://engineering.princeton.edu/news/2025/01/06/ai-slashes-cost-and-time-chip-design-not-all?utm_source=chatgpt.com
https://engineering.princeton.edu/news/2025/01/06/ai-slashes-cost-and-time-chip-design-not-all?utm_source=chatgpt.com
https://engineering.princeton.edu/news/2025/01/06/ai-slashes-cost-and-time-chip-design-not-all?utm_source=chatgpt.com
https://engineering.princeton.edu/news/2025/01/06/ai-slashes-cost-and-time-chip-design-not-all?utm_source=chatgpt.com
https://engineering.princeton.edu/news/2025/01/06/ai-slashes-cost-and-time-chip-design-not-all?utm_source=chatgpt.com

Why can’t we design a process like we design a chip?

SPEC RECIPE RESULT

()] PRESSURE | ' TCCT RELT
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TCP POWER STG

SELECTIVITY BIAS VOLTAGE | TESC |
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ESCT IR ne 500Wb ‘
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SEM of 3D NAND Samsung 92L, 256Gb, TLC, Tech Insights

Memory cell

Consider
memory hole
etch in 3D
NAND
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big data approach? N
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Simply put,

1t costs too
much and
takes too long
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Little data
world but big
dimensional
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What about
physics?...



Scales that span at least nine orders of magnitude

109 m 103 m 10® m 10° m Output
Chamber scale Plasma scale Feature scale Atomic Scale metrics
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< Ry Q<. A neural master equation framework for
QQ<> . A b multiscale modeling of molecular processes:

application to atomic-scale plasma processes
Nath, S., Vella, J.R., Graves, D.B. et al. npj Comput Mater 11, 231
(2025). https://doi.org/10.1038/s41524-025-01677-4
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Complexity Reduction and Semi-Empiricism

gen reaction set.

Reaction Rate coefficients PARA L L E L S E R I ES

_ . 1 1 N 1 ; 7 4z
Fr6=YeeD g /A? 571 Zeff o Zl ZZ eff — 1 2
Lo~ Z, Lo~ L,

When Z,>>2Z, When Z,>>2Z,

Where Z = chemical impedance ~1/keff
A LAM RESEARCH



Basic Plasma Etch Mechanism: Ion-Neutral Synergy

lon-limited

Etch Rate =~ Ug N Sl
1/2 1/2 v-Snh -

l

Neutral-

limited

Ratio of Neutrals to lons

Etch Rate (ER)

lon Energy  lon Flux Neutral Flux

A 4

Coburn & Winters, J. Appl. Phys, May 1979
Chang, et.al, JVST, 1997

- " Neutrals , lons
' w0/ only Radicals + lons only

Spontaneous Sputtering
201, isotropic

Si ER (arb units)

35eV Ar'

A L.y researcs Ratio of Cl to Ar+ flux



“All models are
wrong, some
are useful.”

George Box, 1976
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Let’s play a “game” to benchmark models (and Humans)

Meets Spec

# of Training Ryns J l- r

Pressure Power 1 Power 2
N \
7

Ar Flow NF3 Flow Temperature

|
N -




A virtual plasma etch process twin

INCOMING RECIPE > SIMULATOR = OUTPUT TARGET OTHER PROFILES

Pressure IS
Plasma power1 Pressure
Plasma power2 Etch depth
Ar flow Etch rate
Gas 1 Mask remain
Gas 2 Top CD
Gas 3 Delta CD
Duty cycle Bow CD
Pulse frequency
Temperature

Temperature

fori |mprovmg semlconductor process development Nature 616, 707—

A 711 (2023). https://doi.org/10.1038/s41586-023-05773-7




Machine alone was no match for expert engineer

Process engineers Inexperienced humans Computer algorithm
TEL _ . = === = r__l n
L Senior engineer #1 | I | ' I :
L Senior engineer #2 | ! I [l
I| 11 . . = l ‘ l | I
o == Senior engineer #3 2 | W I A |
—_ By — Junior engineer #1 —_ : —_ I : A |
) ] | — Junior engineer #2 D : D Iy | | || I
< h[ Junior engineer #3 < < : : | | Il rl :
O |l S = AR I I
& |y <L X L R I
Q L O O L] R
© h @ © |‘ [ | | || (| |
= = = L } Ly l' Iy |' |
[} 0 i il : : 2 I|_I | II [ I | | |
2 : % SRS : : 2 N o]
= 1\ Winner: = o I|," l ll l |' H
‘ i T : =
o A $105,000 o o N |l || |-
o ; o oy | B | T
L\;L/\a o ERE N ERRS g I i &
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Human learning curve consists of rough and fine tuning

Expert trajectory

=
o

Rough
tuning Inflection of
Frustration

o
oo

ot
fo)l

o
~

Fine tuning

'§>

20 40 60 80 100 120
Development Cost ($K)
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 Baseline from

» Close to spec

experience
* Physical intuition
and domain
Domain knowledge knowledge less
and physical useful
intuition are
valuable * Frustrating, low-
productivity path to
Fulfilling, rapid solution

progress toward
solution




Human-machine collaboration yields cost and

(‘n"v) 49xoe1] ssaiboid

2 (=]
s m N m
%8
PALE o TorsITIIITTTLE
&l e 1
4 7 -~-mme=zzSIZlll
........... 1| B risssesea-
nunnnuun.u.nuuulnn-..h- -3 I P etdniniate T TTTTirmrrma— =)
TTTEN B Seemmmem S
=
5
s L0
T T T T (=] T . - - o
= d @ < o = S o © < N S
- (=] (=] (=] (=] (=] — (=] =] (=] L= =]
(*n"v) 12yoen ssaiboid ("'n"v) 1eyoe4} ssaiboid
)
r —
g .5 B
- M~ = e
o L e ———r
+= = 4 - T P faylpinet-T T S
m o cmp o=t = m il P | o
= . O =L o]
Y O cwwzzromm u.u.nu._i £ it
n m =
- £
= -8 O 1o
=
I
T T T T (=] I ; . - a
o © © < o o o o © L N L8
- S o (=] =] = — = P = P =
("'n"v) sevoen ssauboig {'n"v) 1ex0ea) sS2uB0Ig
-
3 &
—
= x|
0 o o
(7)) -— =]
S ¢ T 5
W o =
> 5 2
o
£ o wel £
Q /0 9 -
D} ) "
o (o)) -m o
(av] (e)) (] O
= ®
7)) + o
t C I.D - —
e % ®'T &
“ n & 5
= rv,LA B. o m
° K
> < o
L ]
a T T T T T 0
p) © © © ¥ o 9
- o o o o o
P

t

Cumulative cost ($1,000)

Cumulative cost ($1,000)

A LAM RESEARCH



Optimal transfer leverages human investment

Experimental V-curve Schematic
Expert benchmark
Expert benchmark Success rates |:
|: M% 42% 76% 99% 96% 100% 4_—|
100~ . -100
: = Max
— 1 2 cost
S 80- . 2 Lg0 9 ‘g savings
q. e o S
- . o S
T 1 @ :
5 60 ; T L60 & 2 +
B y A I
8 wh e e = o T
8 40-. . 40 ﬁ £
B u @ L Optimal
Ly = ;
O L. | - 0 S transfer point
e
O- L L] L] L] L] L] 0
No A B C D E
human More data from expert>
More data from expert—>
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Bayesian Optimization Algorithm Comparison

Cost-to-target ($1,000)
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MCMC sampling

Tree-structured Parzen

Gaussian Process
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Estimator
Expert benchmark Success rates
0% 23% 31% 76% 46% 50% 2% 43% 54% 65% 32% 32% 1% 42% 76% 99% 96% 100%
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And the winner is...

|
| |

/ ‘ il R
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The Theory
That Would
]“Ot[nef?

SHARON BERTSCH

MCGRAYNE

How Bayes' Rule Cracked the Enigma
Code, Hunted Down Russian
Submarines, and Emerged Triumphant
from Two Centuries of Controversy

Princeton Plasma Physics School

Bayesian Optimization
using a Gaussian Process

Gortler, et al., "A Visual Exploration of Gaussian Processes", Distill, 2019.

https://distill.pub/2019/visual-exploration-gaussian-processes/

Eric J. Ma, An Attempt At Demystifying Bayesian Deep Learning
https://ericmjl.github.io/bayesian-deep-learning-demystified/#/IntroductionSlide
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https://distill.pub/2019/visual-exploration-gaussian-processes/
https://distill.pub/2019/visual-exploration-gaussian-processes/
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https://distill.pub/2019/visual-exploration-gaussian-processes/
https://distill.pub/2019/visual-exploration-gaussian-processes/
https://distill.pub/2019/visual-exploration-gaussian-processes/
https://distill.pub/2019/visual-exploration-gaussian-processes/
https://ericmjl.github.io/bayesian-deep-learning-demystified/#/IntroductionSlide
https://ericmjl.github.io/bayesian-deep-learning-demystified/#/IntroductionSlide
https://ericmjl.github.io/bayesian-deep-learning-demystified/#/IntroductionSlide
https://ericmjl.github.io/bayesian-deep-learning-demystified/#/IntroductionSlide
https://ericmjl.github.io/bayesian-deep-learning-demystified/#/IntroductionSlide
https://ericmjl.github.io/bayesian-deep-learning-demystified/#/IntroductionSlide
https://ericmjl.github.io/bayesian-deep-learning-demystified/#/IntroductionSlide

An Attempt At Demystifying Bayesian Deep Learning

Eric J. Ma

https://ericmjl.github.io/bayesian-deep-learning-demystified/#/IntroductionSlide

function

linear Y = f(Xa wi, bl)
regression f(ZC, w, b) - w4+ b

Z = f(X, ’U:‘l,bl)

logistic Y= g(Z)
regression
(classification)
(0) = 7
€Tr) =
. 14e®

Z = tanh(f (X, w,b1))
Y = ReLu(f(Z, w2, b2))

deep net
€Il ReLu(r) = max(z,0)
2z
et —1
tanhz = ———
e +1

Source: € ericmijl/bayesian-deep-learning-demystified

Cheat Sheet

matrices computational graph

X w b Y
(LI -m+0-0 o wi; ~ N(0,100)
by ~ N(0,100)

X w b z

‘B +0-=L]
Wy, N(O, 100)
0 C by ~ N(0,100)

z . Y

L] —— [

i

X w, b, z
. + O -
Oio w1, "-’N(O,l)
7 b1,; ~ N(0,1)

' tanh z
> ELL
Wo ; ~~ N(O, 1)

3 v b v
CLL] - I + O - by ~ N(0,1)
Y’ relu Y O O
& > [
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https://ericmjl.github.io/bayesian-deep-learning-demystified/#/IntroductionSlide
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Bayesian Optimization

® observations
—— mean

p(8)p(D|6)
p(D)

Bayes theorem: p(0|D) =

| Metrology | Recipdl Model parameters

\ v
Surrogate: Yy = f(x,0) + &€

e
<]
L=}
(7]
| =
=]
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B
S
o
1=
m

(- 0

y X

Prior -
\ 1) » Bayesian Optimization is a widely adopted ML/AI framework for
¥ optimization and inverse design where performance evaluation is

‘Data costy
( 0 Bayesian inference allows one to characterize epistemic uncertainty

y X Al BO makes cost-efficient decisions for next experiment based on evidence
Posterior "1 "‘1 collected from existing data and remaining uncertainty of model

BO updates the model and experiment decision based on new data
A

g _/
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COST-TO-TARGET

ALGORITHM

$739K

AAAAAAAAAAA

The results showed
the hybrid model

saves time & reduced

chip development
costs by 50%

EXPERIENCED HF-CL
HUMAN ENGINEER APPROACH
$105k $52k

Hybrid approach wins

Human-first,
machine-last
saves countless
hours and
millions of dollars



Computer should partner with an experienced engineer

Cost-to-target ($1,000)
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Algorithm behaves differently than process engineer

Progress Tracker (A.U.)

A LAM RESEARCH

Human first !

Computer last

25 50 75
Cumulative Cost ($1,000)

100

1148.6
1165.2
1166.8
1149.3
1160. 1
1158.0
1143.9
1137.1
1160.5
1170.7
1161.6

5
Q"’@@ o
68.5 4026
66.5 3594
YA 3480
68.3 3842
60.5 3110
60.0 3103
68.6 3550
67.3 3715
67.7 3830
67.0 3728
67.2 3687

o
®®
% %
90.7 33.9
198.7 33.3
167.6 32.6
109.2 30.7
181.0 27.2
156.8 27.0
90.1 33.4
96.7 34.1
169.9 30.2
196.3 29.2
181.9 30.2

& ¢
Qé{b@ Q"’&@ e
220.0 50.9
231.0 58.4
226.1 58.2
252.7 58.3
204.5 58.1
202.9 58.0
180.0 59.5
180.6 59.5
199.4 57.0
195.7 56.3
194.5 56.0




There 1s high value
learning from virtual
worlds that are not
precisely predictive



Few-Shot Test-Time Optimization Without Retraining

for Semiconductor Recipe Generation and Beyond
http://arxiv.org/abs/2505.16060

Shangding Gu1x*, Donghao Ying1, Ming Jin2, Yu Joe Lu3, Jun Wang 4, Javad
Lavaei 1, Costas Spanos1 ( )

We validate MFL on semiconductor plasma etching tasks, where it

achieves target recipe generation in just five iterations, significantly
outperforming both Bayesian optimization and human experts.

1UC Berkeley 2Virginia Tech 3Lam Research 4UCL SEMISAN
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Physics Informed Machine
Learning

Fewer experiments needed
Improved extrapolation

Ensure physics is obeyed!

SSSSSSS



Physics-Informed Gaussian Processes for Bayesian Optimization
* Additive Models (Data + Physics Residuals)

* f (X) = fphysics(x) +f residual(X)
* fonysics(X): Physics-based model (PDE, surrogate, empirical)
* fresiquai(X): GP correction

* Train GPony -1, sics(X)
* Total prediction = physics model + GP-predicted residual

* Informed Kernels
* Embed constraints: periodicity, conservation laws, symmetries
« Example: Periodic kernel: k(x,x') = 6 exp(-2 sin*(tt|x=x'|/p)/%)
. Leatrn a composite kernel that combines a physics-informed part and a flexible
part.

* Physics-Based Priors

* Default GP: u(x) =0
* Replace with p(x) =1, sics(X)

* Physics-Informed Acquisition Functions
* Guide exploration to physics-interesting areas s
* Feasibility-aware acquisition "L—=J_,>

XY

SEMISAN




Three Approaches to Physics-Informed ML

Physics-Informed

. Physics-Informed Neural
Gaussian Processes

Physics-Informed Neural

Networks (PINNSs) (PIGPS) Operators (PINOs)
Physics Penalize PDE residualsin Embed physicsin prior Embed PDE constraints into
incorporation loss function mean/kernels orresiduals operator learning
Uncertainty No (unless Bayesian
quantification PINNs) = MO
Data requirement Moderate to high Low High

Excellent in data-scarce

Handles complex nonlinear Learns solution operators

S PDES, flexible TSI, Erine e across PDE families
uncertainty
Optimization (can be GP regression (scales poorly Requires large training data +
Computation costly, especially with stiff g PRI g g

with data size) compute

=\
==,
Xy

SEMISAN
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Virtual Process Development

Transform process development through digitalization, automation, simulation & data analysis

A LAM RESEARCH

Assemble

Eroamental  Sarting Assign Process Development is not one monolithic workflow.
Create Desian Materials recipes/tools . . . .
proces g to samples It is many different paths through a variety of different
U Yy 0 AnE . - .
i Choose activities. Catering to these varied workflows requires

metrology to

explore
use

Use

models to

predict
Data Analysis & Experimental Configure

EEEL Experimental Planning & Lab

a holistic strategy.

The activities largely reside in three disciplines, with

Catibration Design Execution e specific requirements, and must be connected through
Model . q
e Beate enterprise-scale storage of experimental process data.
in the lab
Statistical Modernizing and automating physical experimental
Analysi Execute activities in the lab is key to delivering the contextual
trol
Data o Gbs data to the data store
external)
Derived Image analysis and flexible platforms for data science,
Link the machine learning and advanced analytics are critical
Data entry data with . .
e Data context for data engineering.

Query/ Engineering
filter

data
Extract

measurements

Data from images

cleaning/
curation Transformation
of Sensor Data

Connecting platforms and systems to create efficient,
friction-free workflows = Virtual Process Development



Virtual Process Development — Physics and Data

Inverse Design Optimization Mechanistic Unit Process Models

Predictive
Pressure
Plasma power 1
Plasma power 2
Ar flow
C4FE; flow
CaFs flow
CH3F flow
Og flow
Pulse duty cycle
Pulse frequency
Wafer temperature

Data-driven Physics-Based

Image Measurement Automated Model Calibration

Analytical

A LAM RESEARCH




Real-time profile metrology for 100x cycle time reduction

Metrology for high aspect ratio solution development costly, time-consuming, and destructive

. Etchor
Preparation dep Data

0.5 hr 12 - 120 hr 1-24hr analySIS

m TEM collection Image processing

A Barriers: Business model and some invention required

Real-time metrology offers 100x cycle time reduction

1 cycle
N TN T ™ /™™ ™

/|

i - - y N




New Materials Development

* DFT/AI predictions of stability
and transition states

* Synthesis has been a
bottleneck, but...
* Combinatorial techniques
combined with automation and
autonomy is revolutionizing the

pace of new materials
iInnovation

* Process integration and device
fabrication remain bottlenecks

SEMISAN
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Artificial Intelligence and Machine Learning for
Materials Discovery, Synthesis and
Characterization

The use of artificial intelligence, including machine learning, is rapidly rising in all areas of

.
materials science, from materials discovery, synthesis, characterization, and g iy . L
performance. This special collection explores these areas and highlights successes and 3 : l‘

challenges. e .
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Thin Films
Analysis of x-ray emission spectroscopy (XES) data using artificial intelligence techniques included in
the XES Neo package @

Alaina Humiston; Miu Lun Lau; Tim Stack; Evan Restuccia; Alberto Herrera-Gomez; Min Long; Daniel T. Olive; Jeff
Terry

hitps:/doi.org/10,1116/6.0004326

Epitaxial Growth of Materials
Al-guided frame prediction techniques to model single crystal diamond growth @
Rohan Reddy Mekala; Arjun Srinivasan; Matthias Muehle; Elias Garratt; Adam Porter; Mikael Lindvall

https://doi.org/10.1116/6.0004290
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