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AlgorithmWhat goes around 
comes around: 
Using AI to make AI

Richard A. Gottscho, Ph.D.

President, SemiSan LLC

Former Exec VP and CTO of Lam Research



It ain’t what you don’t know 
that gets you into trouble. 
It’s what you know for sure 
that just ain’t so.
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Mark Twain 1835-1910
American writer and humorist
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Inside every AI system are chips…

At the heart of every 

electronic product is a 

complex microchip

Each chip contains 

billions of transistors

that require advanced 

technologies to create

Lam’s equipment is 

used to manufacture 

these semiconductor 

devices with as 

many as 1000 

process steps

Lam wafer fabrication equipment is behind virtually every chip on the market. 

Innovative people,  

designing and 

developing the 

process

Nvidia H100 Hopper
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How chips are made

CLEAN

Put down film

to be patterned

STRIPETCH

Feature

Level:

Photoresist

Create pattern mask Remove residuesRemove maskSelectively remove film

(Directionally) Residue/Particle

LITHOGRAPHYDEPOSITIONINCOMING WAFER

300 mm wafer

-20 nm

Applied Materials: How do you make a semiconductor

Micron: The Hidden Steps of Semiconductor Manufacturing

https://www.youtube.com/watch?v=4gt5jM6afj8
https://www.youtube.com/watch?v=j4aH69SRiT0
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Electronics

~$3.7 Trillion

Wafer fab equipment

~$120 Billion

Semiconductors

~$588 Billion

Wafer fab equipment enables semiconductor industry

Data sources: WSTS, Gartner, VLSI, Lam Research internal

Litho, 
Mask

Plasma 
etch and 

clean

Plasma 
deposition

Other

Implant

CMP

Inspection 
and 

Metrology

2024

1 Applied Materials

2 ASML

3 Tokyo Electron

4 Lam Research 

5 KLA

WFE segments 2024 WFE ranking
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$1 trillion semiconductor industry: 
A multitude of drivers to amplify industry growth
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“The Singularity is Near”
Ray Kurzweil, 1948 -

Futurist and Inventor



“The future ain’t what it used to be”

Yogi Berra, 1925-2015
NY Yankee
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The Semiverse is Lam’s vision 

for a new digital ecosystem: a 

seamlessly integrated digital 

and physical network created 

to foster creativity and problem 

solving through unprecedented 

global collaboration. 

Tim Archer, Lam President & CEO, 

Accelerating through the Semiverse, imec 

International Technology Forum, May 2022
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Semiverse for 10,000x lower cost
Virtualization leverages (not replaces!) investment 
in physical assets and real experiments

Virtual experimentation saves time, money, and 
resources (per recipe)

• Real experiments - $1000, 0.5 days

• Simulated experiments - $0.11, 8 mins

• Emulated simulations - $3e-07, 0.0013 s

Virtual experimentation can be ubiquitous and an 
effective workforce training tool

Barriers

• Business model

• Some invention required

• Data sharing/ownership concerns

Virtual 

tool:

Virtual 

fab:

Virtual 

process:
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The Semiverse is GREENer

Every experiment investigated showed lower CO2 equivalent from simulation

IEEE TRANSACTIONS ON SEMICONDUCTOR MANUFACTURING, VOL. 37, NO. 4, NOVEMBER 2024
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Simulate operating 
conditions in the chamber 
to predict and optimize 
process behaviors

Reactor-scale twin

Reduce product development cycle time 

The power of transformation

Accurately estimate the etch or deposition 

rate on the entire wafer surface 

Less waste with enhanced productivity
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Virtual design, build, test, and verification 

– find issues before physical build 

The power of transformation

Design for manufacturing and serviceability 

Less waste from fewer hardware iterations

Improving first time 

right from design 

through install

Equipment-scale twin 
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Building equipment 

expertise faster and 

more effectively

​   
Provides faster more complete learning for 

engineering workforce 

The power of transformation

Allows more frequent refresher training and 

content updates

Enable earlier access to new product training

Equipment-scale twin
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Reducing tool 

downtime with 

AI and AR enabled 

troubleshooting

Equipment-scale twin 

AI identifies problem and prescribes fix using 

data and learning from various sources

The power of transformation

Minimizes engineering service labor 

and cost
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Using machine 

learning to achieve 

yield faster with 

chamber matching 

and fleet 

optimization

Fab-scale twins 

Accelerate chamber matching during install, 

shortening time to tool qualification

The power of transformation

Minimizes fleet performance variability

Reduces engineering service labor



https://www.smartusatwins.org/
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Digital Twins for
Smarter Semiconductor
Manufacturing

https://www.smartusatwins.org/
https://www.smartusatwins.org/
https://www.smartusatwins.org/


Ask ChatGPT
Please provide a summary of the state-of-the-art in the use of machine 
learning to optimize semiconductor chip manufacturing

Thought for 13 seconds…
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Machine learning (ML) has rapidly been adopted across 
semiconductor manufacturing, transitioning from traditional rule-
based control to data-driven, adaptive systems. State‐of‐the‐art ML 
methods now permeate every facet of semiconductor chip 
manufacturing—from virtual metrology and yield enhancement to 
recipe tuning, scheduling, and design automation. 
Ongoing advancements in explainability, federated training, and 
quantum‐inspired algorithms are poised to drive the next wave of 
efficiency, quality, and agility in semiconductor fabs.

References included in further reading list at end of this presentation

Princeton Plasma Physics School 19



Some Pertinent References 
• E.A Rietman and E.R. Lory, “Use of neural networks in modeling semiconductor manufacturing processes: an 

example for plasma etch modeling.” Semiconductor Manufacturing, IEEE Transactions on Semiconductor 
Manufacturing 6(4):343 – 347 (1993)

• Anirudh et al., "2022 Review of Data-Driven Plasma Science," IEEE Trans. Plasma Sci., vol. 51, no. 7, July 
2023. 

 Plasma science is entering a transformative data-driven era
 Core technologies:

 Surrogate modeling & Physics-Informed Neural Networks (PINNs)
 Workflow automation, visualization, and uncertainty quantification

• Y.-L. Chen et al., “Exploring Machine Learning for Semiconductor Process Optimization: A Systematic 
Review.” Jul. 16, 2024. doi: 10.36227/techrxiv.172114788.85190557/v1

Optimize semiconductor manufacturing
Literature survey identifying 58 publications

• A. D. Bonzanini, K. Shao, D. B. Graves, S. Hamaguchi, and A. Mesbah, “Foundations of machine learning for 
low-temperature plasmas: methods and case studies,” Plasma Sources Science and Technology, vol. 32, no. 
2, Feb. 2023, doi: 10.1088/1361-6595/acb28c.



Manufacturing leads the way with lots of cheap data

• For a typical fleet of tools
• 100 sensors, 200 chambers
• 2000 status variables
• 100’s of process steps
• 5 Hz frequency

• How much data per fleet?
• 5000 features extracted per wafer run
• 100 million feature data points per day
• 5-10 billion raw data points per day
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AI in Chip Design
• Automated Floor-planning & Placement

• Placing blocks (compute, memory, I/O) 
optimally.

• Google's DeepMind-trained AI delivers better 
layouts for TPU chips in <24 hours

• Generative EDA Tools
• ML models to explore countless design 

variants and optimize multi-objective trade-
offs (power, timing, area).

• Synopsys’ DSO.ai applies ML to chip design 
workflows; Cadence’s Cerebrus uses 
reinforcement learning for automatic 
optimization of placement, routing, and power 
use 

• Physics-aware & Antenna Modeling
• Co-design circuits with electromagnetic 

properties in mind.
• Achieves faster and better designs for 

RF/wireless amplifiers—often beyond 
human capability
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iln.ieee.org+12spectrum.ieee.org+12ece.engin.umich.edu+1
https://www.aegissofttech.com/insights/ai-in-semiconductor-industry/?utm_source=chatgpt.com
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RESULTSPEC RECIPE

Why can’t we design a process like we design a chip?
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Consider 
memory hole 
etch in 3D 
NAND

Memory cell

1 µm

SEM of 3D NAND Samsung 92L, 256Gb, TLC, Tech Insights
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Why not just use a 
big data approach?
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Simply put, 
it costs too 
much and 
takes too long 
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Little data 
world but big 
dimensional 
space
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What about 

physics?...
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Scales that span at least nine orders of magnitude

Plasma scale Feature scale Atomic Scale
Output 

metricsChamber scale
100 m 10-3 m 10-6 m 10-9 m

𝐶𝐷𝑡𝑜𝑝

𝐶𝐷𝑚𝑖𝑑

𝑏𝑜𝑤
𝐷𝑒𝑝𝑡ℎ

𝐸𝑅
…wafer

A neural master equation framework for 
multiscale modeling of molecular processes: 
application to atomic-scale plasma processes
Nath, S., Vella, J.R., Graves, D.B. et al. npj Comput Mater 11, 231 
(2025). https://doi.org/10.1038/s41524-025-01677-4
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Complexity Reduction and Semi-Empiricism

Where Z  chemical impedance ~1/keff

Zeff ~ Z2 

When Z2 >> Z1

Zeff ~ Z1 

When Z2 >> Z1

1

𝑍𝑒𝑓𝑓
=

1

𝑍1
+

1

𝑍2

SERIESPARALLEL 

Z1 Z2

Z1

Z2

𝑍𝑒𝑓𝑓 =  𝑍1 + 𝑍2

Source: Lee and Lieberman, global model, 1994
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Basic Plasma Etch Mechanism: Ion-Neutral Synergy

Ratio of Neutrals to Ions

Ion-limited

Neutral- 

limited
NJ~ER

iJ~ER

Ratio of Cl to Ar+ flux

Chang, et.al, JVST, 1997
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The first record of Box saying "all models 

are wrong" is a 1976 paper published in 

the Journal of the American Statistical 

Association. The paper contains the 

aphorism twice: 

2.3  Parsimony

Since 

cannot obtain a "correct" one by 

excessive elaboration. On the contrary 

following William of Occam he should 

seek an economical description of natural 

phenomena. Just as the ability to devise 

simple but evocative models is the 

signature of the great scientist so 

overelaboration and overparameterization 

is often the mark of mediocrity.

2.4  Worrying Selectively

Since all models are wrong 

must be alert to what is importantly wrong. 

It is inappropriate to be concerned about 

safety from mice when there are tigers 

abroad.

George Box, 1976

“All models are 

wrong, some 

are useful.”
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Let’s play a “game” to benchmark models (and Humans)
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A virtual plasma etch process twin

INCOMING RECIPE       →       SIMULATOR       →       OUTPUT TARGET OTHER PROFILES

Pressure

Plasma power1
Plasma power2

Ar flow

Gas 1
Gas 2

Gas 3
Duty cycle

Pulse frequency

Temperature 

Etch depth

Etch rate
Mask remain

Top CD

Delta CD
Bow CD

Kanarik, K.J., Osowiecki, W.T., Lu, Y.(. et al. Human–machine collaboration 
for improving semiconductor process development. Nature 616, 707–
711 (2023). https://doi.org/10.1038/s41586-023-05773-7
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Machine alone was no match for expert engineer

Inexperienced humans
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Winner: 

$105,000

Senior engineer #1
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$739,000→ 

Source: Kanarik et al, Nature, 2023
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A

B
DC E

Human learning curve consists of rough and fine tuning

Rough-tuning stage

• Baseline from 

experience 

• Domain knowledge 

and physical 

intuition are 

valuable

• Fulfilling, rapid 

progress toward 

solution

Fine-tuning stage

• Close to spec

• Physical intuition 

and domain 

knowledge less 

useful

• Frustrating, low-

productivity path to 

solution

Rough 

tuning

Fine tuning

Expert trajectory

Inflection of 

Frustration
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Human-machine collaboration yields cost and 
time savings
  

99% success rate

Computer last

Human first

Success rate: % meeting target at lower cost than expert

Source: Kanarik et al, Nature, 2023

Expert trajectory
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More data from expert→

Optimal 

transfer point

Max 
cost 
savings
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Experimental V-curve Schematic

Source: Kanarik et al, Nature, 2023

Optimal transfer leverages human investment
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Bayesian Optimization Algorithm Comparison

MCMC sampling
Tree-structured Parzen 

Estimator
Gaussian Process



And the winner is…

How Bayes' Rule Cracked the Enigma 
Code, Hunted Down Russian 
Submarines, and Emerged Triumphant 
from Two Centuries of Controversy
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Görtler, et al., "A Visual Exploration of Gaussian Processes", Distill, 2019.
https://distill.pub/2019/visual-exploration-gaussian-processes/

Eric J. Ma, An Attempt At Demystifying Bayesian Deep Learning
https://ericmjl.github.io/bayesian-deep-learning-demystified/#/IntroductionSlide

Bayesian Optimization 
using a Gaussian Process

https://distill.pub/2019/visual-exploration-gaussian-processes/
https://distill.pub/2019/visual-exploration-gaussian-processes/
https://distill.pub/2019/visual-exploration-gaussian-processes/
https://distill.pub/2019/visual-exploration-gaussian-processes/
https://distill.pub/2019/visual-exploration-gaussian-processes/
https://distill.pub/2019/visual-exploration-gaussian-processes/
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https://ericmjl.github.io/bayesian-deep-learning-demystified/#/IntroductionSlide
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An Attempt At Demystifying Bayesian Deep Learning
Eric J. Ma
https://ericmjl.github.io/bayesian-deep-learning-demystified/#/IntroductionSlide
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• Bayesian Optimization is a widely adopted ML/AI framework for 

optimization and inverse design where performance evaluation is 

costly

–Bayesian inference allows one to characterize epistemic uncertainty

–BO makes cost-efficient decisions for next experiment based on evidence 

collected from existing data and remaining uncertainty of model

–BO updates the model and experiment decision based on new data

Bayesian Optimization

𝒚 = 𝑓(𝒙, 𝜽) + 𝜺 

Prior

𝒚 𝒙
𝜽

Metrology Recipe Model parameters 

Noise 

Data 

Posterior

𝒚 𝒙
𝜽

𝑝(𝜽|𝐷) =
𝑝 𝜽 𝑝(𝐷|𝜽)

𝑝(𝐷)
Bayes theorem:

Surrogate:
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Human-first, 

machine-last 

saves countless 

hours and 

millions of dollars

Hybrid approach wins

$$

$
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T
$$$

ALGORITHM

$739K

EXPERIENCED 

HUMAN ENGINEER

$105k

HF-CL 

APPROACH

$52k

The results showed 
the hybrid model 

saves time & reduced 
chip development 

costs by 50%
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Computer should partner with an experienced engineer

Source: Kanarik et al, Nature, 2023
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Algorithm behaves differently than process engineer
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There is high value 

learning from virtual 

worlds that are not 

precisely predictive



Few-Shot Test-Time Optimization Without Retraining
for Semiconductor Recipe Generation and Beyond
http://arxiv.org/abs/2505.16060
Shangding Gu1∗, Donghao Ying1, Ming Jin2, Yu Joe Lu3, Jun Wang 4, Javad 
Lavaei 1, Costas Spanos1 (May 2025)

We validate MFL on semiconductor plasma etching tasks, where it 
achieves target recipe generation in just five iterations, significantly 
outperforming both Bayesian optimization and human experts.
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1UC Berkeley 2Virginia Tech 3Lam Research 4UCL

http://arxiv.org/abs/2505.16060


Physics Informed Machine 
Learning
Fewer experiments needed
Improved extrapolation
Ensure physics is obeyed!



Physics-Informed Gaussian Processes for Bayesian Optimization
• Additive Models (Data + Physics Residuals)

• f(x) = fphysics(x) + fresidual(x)
• fphysics(x): physics-based model (PDE, surrogate, empirical)
• fresidual(x): GP correction
• Train GP on y - fphysics(x)
• Total prediction = physics model + GP-predicted residual

• Informed Kernels
• Embed constraints: periodicity, conservation laws, symmetries
• Example: Periodic kernel: k(x,x') = σ² exp(-2 sin²(π|x−x'|/p)/l²)
• Learn a composite kernel that combines a physics-informed part and a flexible 

part.
• Physics-Based Priors

• Default GP: μ(x) = 0
• Replace with μ(x) = fphysics(x)

• Physics-Informed Acquisition Functions
• Guide exploration to physics-interesting areas
• Feasibility-aware acquisition



Three Approaches to Physics-Informed ML
Physics-Informed Neural 
Networks (PINNs)

Physics-Informed 
Gaussian Processes 
(PIGPs)

Physics-Informed Neural 
Operators (PINOs)

Physics 
incorporation

Penalize PDE residuals in 
loss function

Embed physics in prior 
mean/kernels or residuals

Embed PDE constraints into 
operator learning

Uncertainty 
quantification

No (unless Bayesian 
PINNs) Yes Not standard 

Data requirement Moderate to high Low High 

Strengths
Handles complex nonlinear 
PDEs, flexible

Excellent in data-scarce 
regimes, principled 
uncertainty

Learns solution operators 
across PDE families

Computation
Optimization (can be 
costly, especially with stiff 
PDEs)

GP regression (scales poorly 
with data size)

Requires large training data + 
compute



L A M  R E SE A R C H

Virtual Process Development
Transform process development through digitalization, automation, simulation & data analysis

• Process Development is not one monolithic workflow.  

It is many different paths through a variety of different 

activities.  Catering to these varied workflows requires 

a holistic strategy.

• The activities largely reside in three disciplines, with 

specific requirements, and must be connected through 

enterprise-scale storage of experimental process data.

• Modernizing and automating physical experimental 

activities in the lab is key to delivering the contextual 

data to the data store

• Image analysis and flexible platforms for data science, 

machine learning and advanced analytics are critical 

for data engineering.

• Connecting platforms and systems to create efficient, 

friction-free workflows = Virtual Process Development

Experimental 
Planning & 

Execution

Data 
Engineering

Data Analysis & 
Experimental 

Design

Assign 

recipes/tools 

to samples

Choose 

metrology to 

use

Execute  

experiment 

in the lab

Execute 

metrology 

(Lab/ 

external)

Assemble 

Starting 

Materials 

Configure 

Lab 

Hardware

Link the 

data with 

context

Extract 

measurements 

from images

Transformation 

of Sensor Data

Data 

cleaning/ 

curation

Data entry 

(manual/ 

semi-auto)

Advanced/ 

Statistical 

Analysis

Model 

Creation

Model 

Calibration

Data 

visualization

Query/ 

filter 

data

Derived 

measurements

Create 

Experimental 

Design

Use 

models to 

predict

Use 

models to 

explore

Create 

Process 

Strategy 

Enterprise  

Lab Data 

Storage
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Virtual Process Development – Physics and Data

Data-driven Physics-Based

Predictive

Analytical

Image Measurement

Inverse Design Optimization Mechanistic Unit Process Models

Automated Model Calibration
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Real-time profile metrology for 100x cycle time reduction

Real-time metrology offers 100x cycle time reduction

TEM 
prep

TEM collection Image processing

0.5 hr 12 - 120 hr 1 – 24 hr

Etch or 

dep
Data 

analysis

Preparation

Metrology for high aspect ratio solution development costly, time-consuming, and destructive

1 cycle

Barriers: Business model and some invention required



New Materials Development

• DFT/AI predictions of stability 
and transition states

• Synthesis has been a 
bottleneck, but…

• Combinatorial techniques 
combined with automation and 
autonomy is revolutionizing the 
pace of new materials 
innovation

• Process integration and device 
fabrication remain bottlenecks
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Focus Count

Synthesis I

Characterization/Analysis IIII

Monitoring/Control IIII

Discovery I



L A M  R E SE A R C H

Chip

High aspect 

ratio etch

Electronics

Recipes and 

controls

Semiconductor 

equipment

AlgorithmWhat goes 
around comes 
around faster 
and better
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